You are here: Home -  Nike Free Running limit of a Ricci flow which

Nike Free Running limit of a Ricci flow which

Nike Free Running

Precise asymptotics have been proved for sums like ∑n=1∞nr/p−2P(|Sn|⩾εn1/p) as ε↘0, where <img height="18" border="0" style="vertical-align:bottom" width="86" alt="" title="" Nike Free Running src="http://origin-ars.els-cdn.com/content/image/1-s2.0-S0304414902001576-si2.gif"> are partial sums i.i.d. random variables, and, more recently, for renewal counting processes and first passage time processes of random walks. The present paper is devoted to analogous results for the record times and the associated counting process of i.i.d. absolutely continuous random variables. Using the λ and μ functional introduced by Perelman, we prove that the compact blow-up limit of a Ricci flow which generates singularities at finite time must be a shrinking Ricci soliton. To cite this article: Z.-l. Zhang, C. R. Acad. Sci. Paris, Ser. I Roshe Run Junior Uk 345 (2007).RésuméUtilisant les fonctionnelles λ et μ introduites par Perelman, nous démontrons que les limites d'explosion compactes, en temps fini, du flot de Ricci engendrent des singularities de type solitons « rapetissés ». Pour citer cet article : Z.-l. Zhang, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
0 Comments


SPEAK YOUR MIND